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A meso/macro discrete model of fabric has been developed, accounting for yarn-yarn
interactions occurring at the crossing points. The fabric yarns, described initially by a
Fourier series development, are discretized into elastic straight bars represented by
stretching springs and connected at frictionless hinges by rotational springs. The motion of
each node is described by a lateral displacement and a rotation. The compressibility of both
yarns is expressed as a kinematic relationship, considering frictionless motions of the
yarns. The expression of the reaction force exerted by the transverse yarns at the contact
points is then assessed, from which the work of the reaction forces is established. The
equilibrium shape of the yarn is obtained as the minimum of its total potential energy,
accounting for the work of the reaction forces due to the transverse yarns. Simulations of a
traction curve of a single yarn are performed, that evidence the effect of the yarn
interactions and the main deformation mechanisms.
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
The analysis of the deformations and shape forming
of woven structures such as textiles is nowadays an
important scientific and technological topic, due to the
wide range of applications of these structures : men-
tion e.g. composites with a woven reinforcement used
in aerospace industry for their gain of weight; clothes
industry, or geotextiles. Three imbricated scales can be
identified: the microscopic scale (scale of the yarn),
the macroscopic scale of the woven structure, and an
intermediate scale of a few intertwined yarns, that de-
fines the unit cell reproducing the whole structure by a
periodic translation, called the mesoscopic scale. The
organisation of the yarns within the unit cell, (that de-
fines different armours, such as satin, serge) and the
interactions between yarns (contact, friction) play an
important role in favouring the shape forming of the
initially flat structure. It is therefore important to de-
velop reliable and accurate micromechanical models,
in order to predict the 3D deformation of woven struc-
tures during real forming processes. These models can
then further be used at the next scale (the macro scale)
and implemented in FE codes [1–7]; this description

∗Author to whom all correspondence should be addressed.

can be refined, using the so-called meso-macro models
that account for the nonlinearities due to the change of
undulations of the yarns [8, 9]. A synthetic view of the
modelling of woven structures is given in [10].

A discrete model of fabric has been developed [11],
relying on a topological description of the yarns as
an undulated beam modelled by analogical spring
elements, in connection with a given kinematics of
the analogical elements (extensional, flexional and
torsional springs). The analogical modelling strategy
of woven structures has been developed at both
the macroscopic scale (the unit cell is endowed by
extension, shear, torsion and bending deformation
modes that mimic the kinematics of a piece of fabric
at the structural scale) and the mesoscopic scale: the
basic difference is that the mesoscopic model explicitly
considers the yarn shape, thus account for the change
of yarn undulations that are responsible for the geomet-
rical nonlinearities observed at the macroscopic level.

The discrete approaches presented in this work bears
some resemblance with the work by Provot [12], who
models the tissue by a set of punctual masses connected
with extensional, flexional and shear-like springs;
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however, the model elaborated by this author does only
consider the in-plane deformation of the pattern, and
thus excludes the displacements of the nodes outside
the initial plane of the tissue. The present model is in-
tended to give a generalized description of the yarns
motion and interactions.

As the woven structure becomes stretched, the in-
teraction between both sets of yarns (warp and weft)
is increased, and one should expect that the ability of
the tissue to deform shall be accordingly modified: it is
intuitively clear that the yarn mobility is reduced at the
contact zone between both yarns, specially in terms of
rotation. This in turn affect the shape forming capac-
ity of woven structures at the macroscopic scale. Few
works in the literature have been devoted to the analysis
of the contact interactions between the yarns, including
yarn interactions and compressibility, notwithstanding
3D finite element analysis within a context of contact
mechanics (see e.g. [13]). The goal of the developed
approach of the interactions between yarns is to incor-
porate the effect of the contact in a manner compatible
with the represented discrete model, at a mesoscopic
scale, thus without considering the three-dimensional
picture inherent to a microscopic view of the yarns
contact problem.

2. Discrete model description: Consideration
of the contact between warp and weft

One considers in the sequel the plane motion of a single
yarn (the warp) subjected to traction at its extremities
and to the punctual contact reactions exerted by the
transverse yarns (the weft), Fig. 1. Although this situ-
ation is somewhat artificial (since we isolate mentally
the yarn from the trellis), it gives a first insight into the
interaction effect between both sets of yarns. The dis-
cretized yarn consists of a set of punctual masses mutu-
ally connected by extensional rigidities Cei = EA/�;
each node is given a rigidity in flexion Cbi = EI/�

(� is the curvilinear distance between two consecutive
nodes), Fig. 1.

The kinematics of the yarn is described on Fig. 1, and
consists of the vertical displacements Wi and the rota-
tions ψ i (the rotation axis being orthogonal to the plane
of Fig. 1) of the connecting nodes. In the sequel, the
contact forces exerted by each transverse yarn (marked
with a cross on Fig. 1) are first expressed, involving the
Timoshenko beam theory [14].

3. Determination of the warp and weft
interactions

In this section, we first study the yarn-yarn interac-
tions within the woven structure, submitted to an exter-
nal biaxial loading. We will first express the reaction
force occurring at the interlacing points, in terms of
the mechanical and geometrical yarns parameters, and
the traction loads Pwa and Pwe applied in the x and y
direction respectively.

At equilibrium, the deformed shapes of the fabric
yarns are assumed to be periodic and expressed as the
following Fourier series:

• w
j
we(y) =

Nwa∑

n=1

awe
n, j sin

(
( j − 1)π + n

πy

Lwe

)
,

for a weft yarn of index j

• wk
wa(x) =

Nwe∑

n=1

awa
n,ksin

(
(k − 1) π + n

πx

Lwa

)
,

for a warp yarn of index k

where Lwa (resp. Lwe) is the projected length of the warp
(resp. the weft) yarns on the x-axis (resp. y-axis), and
the (awa

n )n∈[1,Nwe], (awe
n )n∈[1,Nwa] are the Fourier series

coefficients.
In order to establish the expression of the reaction

force exerted at the yarn-yarn contact points, we ana-
lyze the mechanical behavior of the system �we con-
sisting of the Nwe weft yarns: in this case, the sub
system �wa consisting of the set of warp (Nwa yarns) is

Figure 1 Discrete model of the yarn isolated from the trellis.
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Figure 2 Elastic beam subjected to lateral and axial loads.

considered as an external system; accordingly, the con-
tact forces exerted on the weft yarns are considered as
external forces for �we. Using the Timoshenko’s beam
theory, in the case of an elastic beam subjected to an
axial load P and a lateral force F exerted at a point of
abscissa c (Fig. 2), the equilibrium shape of the elastic
beam is given by the Fourier series

w(x) = 2FL3

π4EI

N∑

k=1

1

k2
(
k2 + P

Pcr

)sin

(
kπc

L

)

×sin

(
kπx

L

)
(1)

with Pcr = π2EI
L2 , the beam critical compressive load

L the projected beam length and EI the beam bending
rigidity

Using the superposition principle, the equilibrium
shape associated to a weft yarn, treated as an elastic
beam subjected to an axial load and periodic lateral
forces (Fig. 3), is defined by the Fourier series coeffi-
cients, viz

awe
n, j = 2Rwa/weL3

we

π4EIwe

Nwa/2∑

m=1

1

n2(n2 + αwe)

×
[

sin

(
nπ

Nwa

(
2m− 3

2

))

− sin

((
2m− 1

2

)
nπ

Nwa

)]
∀ n ∈ [1, Nwa]

(2)

with αwe = Pwe
Pwe

cr
and Pwe

cr = π2EIwe
L2

we
.

We then deduce the deformed shape of a weft yarn
of index j, in terms of the reaction force Rwa/we, as

w j
we(y) = 2Rwa/weL3

we

π4EIwe

Nwa∑

n=1

Nwa/2∑

m=1

1

n2(n2 + αwe)

×
[

sin

(
nπ

Nwa

(
2m− 3

2

))

− sin

((
2m− 1

2

)
nπ

Nwa

)]

× sin

(
( j − 1)π + nπy

Lwe

)
(3)

This result shows that the deformed shape of the weft
yarns within a woven structure at equilibrium is known
from the values of the applied traction Pwe (trough the
ratio αwe) and the yarn-yarn contact forces. We note
w̃we = Awe the amplitude of the weft yarns within the
woven structure, defined at the contact points abscissas
(Fig. 3) by

w̃we = ∣∣w j
we(c j )

∣∣ (4)

At the interlacing points, the new double sum of the
Equation 3 simplifies as

∣∣∣
∑ ∑∣∣∣ = 1

Nwa
(
N 2

wa + αwe
)

for y = ck ∀ k ∈ [1, Nwa] (5)

We deduce then, from Equations 3–5, the expression
of the reaction forces that exert the transverse yarns on
the weft yarns at the interlacing points, accordingly to
the amplitude undulations w̃we = Awe, thus we have

∀ y = ck, |wwe(y)|= w̃we

= 2Rwa/we

π4EIwe

L3
we

Nwa
(
N 2

wa+αwe
) ⇔ Rwa/we

= π4

2

EIwe
(
Lwe

p

)3

(
1+ αwe

N 2
wa

)
w̃we (6)

In the case of only one reaction force (Nwa=1), ap-
plied at the middle of the yarn, we find a result identical
to that of Timoshenko [13], such as

F = π4

2

EI

L3
(1 + α) w̃ (7)

This general framework shall be involved in the se-
quel to analyse the behaviour of a single yarn, account-
ing for the interactions of the transverse yarns.

Figure 3 Distributed contact forces exerted on a weft yarn of index j.
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4. Effect of the yarn-yarn interactions on the
fabric extension behaviour: case of a single
yarn

In this paragraph, we analyse the effect of the interac-
tion between the weft and the warp yarns for a single
warp yarn loaded by a traction force, and subjected
to its own weight. For this purpose, we consider two
different cases:

(i) Case of a warp yarn within a woven structure,
submitted to the interactions of the transverse yarns;
(ii) Case of an initially deformed yarn, being extracted

from the woven structure (thus free of contact with
other yarns), having the same mechanical and geomet-
rical properties.

In both cases, the yarn shapes are assumed to be
periodic, their equilibrium shapes being expressed as
Fourier series development limited to the first Nwe har-
monics, viz

wwa(x) =
Nwe∑

n=1

awa
n sin

(
nπ

x

Lwa

)

(case of a warp yarn of index k = 1)

(8)

with Lwa the projected length of the yarn on the x-axis
and Nwe the number of half-periods of undulation. In
the case of a warp yarn within the woven structure, it
is the number of transverse yarns contacts.

Under the traction loads Pwa, the equilibrium state
(with or without lateral contacts), is obtained as the
minimum of the total potential energy of the deformed
yarns. In each case, the expression of the total potential
energy is established as a function of the kinemati-
cal yarn parameters (the displacements ui, wi and the
rotations ψ i of the yarn’s nodes). The work of the re-
action force occurring at the interlacing points is first
expressed.

4.1. Yarn-yarn interaction model account
for yarn compressibility

Considering perfect contact conditions (absence of
sliding between the yarns, not to say case of a blocked
structure), the continuity condition of the displacement
at the contact points expresses as the following rela-

Figure 5 Definition of a yarn portion length (under half-period).

tionship between the vertical displacements of the sum-
mits of the undulations of the yarns (best illustrated on
Fig. 4)

δwa
t = δwe

t ⇒
ws−we =(

wso−we+δwe
comp

)+ws−wa − (
wso−wa − δwa

comp

)

=ws−wa − wso−wa + wso−we + δwe
comp+δwa

comp

(9)

in which δwe
comp and δwa

comp are new kinematic variables,
that respectively denote the vertical displacement of the
warp and weft under compression (Fig. 4).

The deformation under compression of a warp, δwa
comp,

varies vs. the contact force exerted by the transverse
weft according to the following phenomenological law
[15–17 ], that can be easily inverted:

δwa
comp = C1

(
1 − e−K1|Rwe/wa|/Lwa

c
) ⇔ |Rwe/wa|

= − Lwa
c

K1
ln

(
1 − δwa

comp

C1

)
(10)

with C1, K1 the two Kawabata parameters for the warp
and Lc the curvilinear length of a yarn portion defined
within a half-period as shown in Fig. 5. In the same
way, the deformation under compression of a weft,
δtr

comp, varies vs. the contact force exerted by the warp
according to

δwe
comp = C2

(
1 − e−K2|Rwa/we|/Lwe

c
) ⇔ |Rwa/we|

= − Lwe
c

K2
ln

(
1 − δwe

comp

C2

)
(11)

with C2, K2 the two Kawabata parameters of the weft.
Note that this way of accounting of the yarn compress-
ibility is global with regard to the yarn geometry, since
for instance the real shape of the yarn cross-section is

Figure 4 Compression and undulation transfer between yarns.
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not considered (the 3D representation in Fig. 4a sup-
ports the explanation of what really happens at the mi-
croscopic scale, whereas the modeling only account for
the mean line interactions of the beams that represents
the yarns).

According to the action/reaction principle valid at
the contact points, viz |Rwe/wa| = |Rwa/we|, the com-
pression displacements of both yarns are further related
by the following relationship

δwe
comp = C2



1 −
(

1 − δwa
comp

C1

) K2
K1

Lwa
c

Lwe
c



 (12)

Equations 9 and 12 then lead to

ws−tr = ws−wa − wso−wa + wso−we + C2

×


1 −
(

1 − δwa
comp

C1

) K2
K1

Lwa
c

Lwe
c



 + δwa
comp (13)

From the relation 6, which expresses the reaction
force exerted by the warp on the weft (constrained by
the lateral reaction forces only: Pwe=0), and the relation
13, we deduce the reaction force (with αwe = Pwe

Pwe
cr

= 0
in this case)

Rwa/we = π4

2

(EI)we(
Lwe

p

)3 ws−we = π4

2

(EI)we(
Lwe

p

)3



(wso−we−wso−wa)+ws−wa+C2



1−
(

1− δwa
comp

C1

) K2
K1

Lwa
c

Lwe
c



+δwa
comp



 (14)

Using now the action-reaction principle, the reaction
force exerted by the weft on the warp at the crossing
points is given by

Rwe/wa = −Rwa/we = −π4

2

(EI)we(
Lwe

p

)3



(wso−we − wso−wa) + ws−wa + C2



1 −
(

1 − δwa
comp

C1

) K2
K1

Lwa
c

Lwe
c



 + δwa
comp



 (15)

Therefore, the work of the reaction force exerted by
the weft on the warp at a crossing node having index j
is given by

WR j
we/wa

=
∫ w

j
s−wa

w
j
so−wa

Rwe/wadw

=
∫ w

j
s−wa

w
j
so−wa

−π4

2

(EI)we(
Lwe

p

)3



(
w j

so−we
− w j

so−wa

) + C2



1 −
(

1 − δwa
comp

C1

) K2
K1

Lwa
c

Lwe
c



 + δwa
comp + w



 dw

= −π4

2

(EI)we
(
Lwa

p

)3




((

w
j
so−we − w

j
so−wa + C2

[
1 − (

1 − δwa
comp

C1

) K2
K1

Lwa
c

Lwe
c

] + δwa
comp

)
w

j
s−wa + 1

2w
j2
s−wa

)

−((
w

j
so−we − w

j
so−wa + C2

[
1 − (

1 − δwa
comp

C1

) K2
K1

Lwa
c

Lwe
c

] + δwa
comp

)
w

j
so−wa + 1

2w
j
so−wa

2)



 (16)

This work further enters in the determination of the
total work of the applied external forces (gravity forces,
traction loads), viz

Wext = Wtr + Wgr + Wreaction (17)

where Wtr refers to the work of the traction loads Pwa

and Wgr corresponds to the work of the gravity forces.
The global displacement �uwa experienced by the

end nodes of the warp is decomposed into the sum of
a flexional contribution �u f

wa (yarn end-displacement
due to the undulation variation) and an extensional
contribution �uex

wa (yarn end-displacement due to the
stretching of the yarn), viz

�uwa =�u f
wa+�u,ex

wa

with





�u f

wa =
Nd∑

i=1

�(cos(ψx,i ) − cos(ψx,oi))

�uex
wa =uNd+1

(18)

thus

�uwa =
Nd∑

i=1

�(cos(ψx,i ) − cos(ψx,oi)) + uNd+1

(19)

For small rotations, the global displacement can be
written as

�uwa ≈
Nd∑

i=1

�

2
((ψx,i )

2 − (ψx,oi)
2) + uNd+1 (20)

The work of the applied load Pwa is accordingly

Wtraction = Pwa

(
Nd∑

i=1

�

2

((
ψk

x,i

)2−(
ψk

x,oi

)2)+uk
Nd+1

)

(21)
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Summarizing previous results, the expression of the
external work Wext becomes

Wext = −π4

2

(EI)we

(Lwa
p )3




((

w
j
so−we − w

j
so−wa + C2

[
1 − (

1 − δwa
comp

C1

) K2
K1

Lwa
c

Lwe
c

] + δwa
comp

)
w

j
s−wa + 1

2w
j2
s−wa

)

−((
w

j
so−we − w

j
so−wa + C2

[
1 − (

1 − δwa
comp

C1

) K2
K1

Lwa
c

Lwe
c

] + δwa
comp

)
w

j
so−wa + 1

2w
j2
so−wa

)





+Pwa

(
Nd∑

i=1

�

2

(
ψ2

i − ψ2
oi

) + un+1

)
−

Nd−1∑

i=1

mi g
(
wi − wo

i

)
(22)

with Nd the number of discrete elements; the index 0
refers to the initial value corresponding to a kinematical
variable at the initial state.

The total potential energy V is then obtained as the
difference between the internal deformation energy U
(due to the flexion, extension and the compression of
the yarn of total length Lwa

s = NweLwa
c ), viz

U = UF + Uex + Ucomp =
Nd−1∑

i=1

1

2
Cbi

(
ψx,i+1 − ψx,i

)2

+
Nd∑

i=1

1

2
Cei (ui+1 − ui )

2 + Lwa
s

K1

×
[(

C1 − δwa
comp

)
ln

(
1 − δwa

comp

C1

)
+ δwa

comp

]
(23)

and the work of the external forces Wext, thus leading
to

V =
(∑Nd−1

i=1
1
2 Cbi(ψx,i+1 − ψx,i )

2 + ∑Nd
i=1

1
2 Cei (ui+1 − ui )2 + Lwa

s
K1

[(
C1 − δwa

comp

)
ln

(
1 − δwa

comp

C1

) + δwa
comp

]

−Pwa
(∑Nd

i=1 �(cos(ψx,i ) − cos(ψx,oi)) + uNd+1
) + ∑Nd−1

i=1 mi g (wi − woi)

)

+
Nwe∑

j=1

π4

2

(EI)we(
Lwe

p

)3




((

w
j
so−we − w

j
so−wa + C2

[
1 − (

1 − δwa
comp

C1

) K2
K1

Lwa
c

Lwe
c

] + δwa
comp

)
w

j
s−wa + 1

2w
j2
s−wa

)−
((

w
j
so−we − w

j
so−wa + C2

[
1 − (

1 − δwa
comp

C1

) K2
K1

Lwa
c

Lwe
c

] + δwa
comp

)
w

j
so−wa + 1

2w
j2
so−wa

)



 (24)

The index j, giving the order of the crossing points,
is replaced in the previous expression by the global
discretization index i such as

w
j
s−ch = wi with i = (2 j − 1) Nd

2Nwe
(25)

We notice that the total potential energy involves two
dependent variables ψ and w with

sinψx,i = wi − wi−1

�
(26)

The discrete displacements (wi )i are obtained from
the discretization of the continuous position wwa(x) =∑Nwe

n=1 awa
n sin(nπ x

Lwa
) according to

∀ i ∈ [1, Nd − 1] wi

=wwa (xi )=
Nwe∑

n=1

awa
n sin

(nπ

L
xi

)
with xi = i L

Nd

(27)

Using the relations (26) and (27), the total potential
energy given by Equation 24 is expressed only in terms
of the coefficients (awa

n )n∈[1,Nwe] of the Fourier series,
together with the extensions (u2, u3, . . . , uNd+1) of the
nodes of the discrete warp yarn (accounting for the
condition u1=0), as

V =V
(
awa

1 ,. . .awa
2 ,. . .awa

Nwe
, u2,. . .ui ,. . .uNd+1, δ

wa
comp

)

(28)

The yarn equilibrium shape is given by
the minimization of the total potential en-
ergy with respect to the set of arguments
(awa

1 , . . . awa
2 , . . . awa

Nwe
, u2, . . . ui , . . . uNd+1, δ

wa
comp), i.e.

by the following set of algebraic equations:

∂V

∂awa
1

= · · · = ∂V

∂awa
i

= · · · = ∂V

∂awa
Nwe

= 0;

∂V

∂u2
= · · · = ∂V

∂ui
= · · · = ∂V

∂uNd+1
= 0

and

(
∂V

∂δwa
comp

)
= 0 (29)

This set of equations has to be completed by the
boundary condition (clamped extremity): U1=0.
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Figure 6 Unidirectional traction curve of the warp yarn. Effect of yarn-yarn interactions.

4.2. Numerical simulations
In the sequel, the developed modeling shall be exempli-
fied by numerical simulations of the motion of one sin-
gle yarn, under the simplifying assumption of incom-
pressibility of its section. Considering carbon fibers
reinforced fabric, the following input parameters are
used (SNECMA, [18]): the mechanical properties of
the warp and weft yarns are taken as (we neglect the
compressibility of both yarns),






EIwa = 1.47e−7 N·m2

EIwe = 1.47e−7 N·m2

EAwa = 13.72 N

The rigidities in flexion/extension of the springs are
then evaluated as






Cb = EIwa

�

Ce = EAwa

�

The geometrical parameters of the discretization
scheme are selected as:






L0 = 0.1 m
wso−wa = 0.5 mm
wso−we = 0.5 mm
Nwe = 16; Nd = 224

The yarn is subjected to an increasing traction load
at its extremities, and one represents the traction load
vs. the yarn end-displacement (Fig. 6); the simulation
without yarn interactions serves as a reference com-
parison case to assess the interaction effect. The mean
curve of the yarn is restricted to the (x, y) plane, (Fig. 4),
and both extremities of the yarn keep aligned with the
direction of traction. The extension of the yarn is here
defined as the displacement of the end node of the
undulated beam. The simulation reproduces in a sat-
isfactory manner the essential trend of the measured
J-shape unidirectional traction curve.

The traction curves evidences two different deforma-
tion mechanisms: the first mechanism is the undulation
variation, corresponding to the first part of the response
(in fact a transfer of undulation between both yarns, oc-
curring at each crossing point), and the second mecha-
nism is the extension of the yarn, which occurs when the

undulation transfer process has been exhausted (Fig. 6).
The consideration of the yarn-yarn interactions leads to
a stiffer response of the yarn (Fig. 6). In fact, during
traction, the transverse yarns resists the yarn-yarn un-
dulation transfer by increasing the reaction force. This
explains why, without yarn-yarn interactions, the loss
of undulation’s process is more rapid compared to the
case with yarn-yarn interactions.

5. Conclusion
We have developed a discrete mass-spring model of
the mesoscopic mechanical behavior of a woven struc-
ture, taking into account the yarn compressibility and
the yarn-yarn interactions at the mesoscopic scale. The
focus has been on the more simple case of a single
yarn interacting with the set of transverse yarns at the
summit of its undulations. The stiffening effect of the
yarn-yarn interactions on the fabric mechanical behav-
ior has been evidenced. From our point of view, the
main advantages of such a discrete approach are two
fold:

(i) The interactions between yarns are modeled in a
simple manner, without the need for a refined contact
analysis;
(ii) It allows to separate and quantify the contribu-

tions of the flexional displacement (due to the undula-
tions variation) and the contribution of the extensional
displacement (due to the yarns stretching) during the
fabric extension process.

The impact of the yarn interactions for the whole
fabric under uniaxial and biaxial loading conditions
shall further be investigated.
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